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1. Introduction

The Global Grid communications environment is designed to provide a high-data-rate network that
supports the full complement of DoD communications needs. Satellite links are an integral part of
the Global Grid concept which extends the connectivity to individual mobile units and jointly
operating forces at isolated locations. However, satellite channels are vulnerable to jamming, in
particular when a high data rate is required. To overcome the jamming problem, the traditional
approach is to design modulation techniques such that, on the average, the spectrum of the signal
looks like the spectrum of a white noise process. This together with channel coding provides
immunity against jamming. The main problem with this approach is that it requires a much larger
spectrum than that of the data sequence; hence, the available spectrum on the link is used mostly
for jamming protection and not for data communications.

The traditional modulation techniques employed on satellite communication links are based on
various properties of the second-order spectrum of the modulation wave form. In this study we
have explored the utility and performance of a new family of modulation schemes that exploit the
properties of the higher-order cumulant sequences and associated polyspectra of the waveform. In
particular, we have investigated an approach in which the third-order polyspectrum, which is
generally referred to as the bispectrum, is modulated. To determine the performance characteristics
of this bispectral modulation scheme, we have considered two different detector structures, for
which we have completed both theoretical and simulated performance analyses. We have studied
the performance of each detector structure in both an additive white Gaussian noise environment
and a partial-band jamming environment, and we have demonstrated that bispectral modulation
techniques can significantly outperform traditional anti-jamming modulation schemes, such as
frequency-hopped, binary frequency-shift keying, in the presence of partial-band jamming. Our
results also indicate that, even on an additive white Gaussian noise channel, bispectral modulation
can be used in parallel with conventional noncoherent modulation techniques to increase the data
rate on the channel or to reduce the sensitivity to synchronization errors between the transmitter and
receiver.

This report is organized as follow. In Section 2, we present a brief introduction to polyspectra and
one particular polyspectrum estimation technique. In Section 3, we discuss in detail the proposed
modulation scheme and a simple technique for implementing it. The results of our performance
analyses are presented in Sections 4 and 5, and in Section 6 we present some conclusions about the
research and suggestions for further study. Considerably more detail regarding the advantages and
direction of future research will be presented in our Phase II proposal, which will be submitted

within 30 days.

2. Background and Definitions

In this section, we give some necessary background information on the properties of higher-order
moments and polyspectra and a brief discussion of the polyspectrum estimation technique
employed in this study.

Let {x(n)} be a strictly stationary real random process. We assume, without loss of generality,

that {x(n)} has mean zero. The kth-order cumulant sequence for such a process is defined in terms
of the first kK moments of the process. For example, the second-, third-, and fourth-order cumulant

sequences are given by:
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Cy(my) = E{x(k)x(k +n,)},
Cy(n,my) = E{x(k)x(k +nmy )x(k +ny )},
Cy(my, ny,m3) = E{x(k)x (k+ny )x(k +np )x(k +ny } - E{x k)x(k +ny )}E{x(k +ny )x(k +ng )}
—E{x(k)x(k+n) YE{x(k + ny )x(k + )} = E{x(k)x(k + 3 ) JE{x(k + g Jx(k + mp)

where the symbol “E” represents the expectation operator, and k, ny, n, and n3 are arbitrary
integers. Clearly {C,(n,)} is just the covariance sequence of the process and {Cs(n,n2)} is the

third moment sequence.

The kth-order polyspectrum of the process Si(®) is the multidimensional Fourier transform of the
corresponding cumulant sequence; that is,

Si(@) =Sk (o, 00 y) Z ZCk g, My )e _‘(m1"1+"'+°”“1"’<-1)

—_—00 nk 1 =0

For k = 2, the polyspectrum is clearly ]l]St the power spectrum of the process. Fork=3and k=4
(the other two cases of most practical interest), the polyspectra are usually referred to as the
bispectrum and trispectrum, respectively. Due to the symmetries and periodicities of the

polyspectrum, it is completely defined by its values on a nonunique principal domain D, < R¥-1.
For example, the principal domain of the bispectrum is generally taken to be:

Dy ={(0,,0,):0< 0, £, 0< 0, < min(w,, 27— 20))}.

This region is depicted in Figure 1.
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Figure 1. Principal Domain of the Bispectrum

Polyspectra have many interesting properties, but the following three are perhaps the most useful:
1. If {x(n)} and {y(n)} are independent processes with polyspectra S; and S}, then
S =Sf+57.
2. If {x(n)} is a Gaussian process, then S; =0 for k£ > 2.

3. If {y(n)} is produced as the output of a linear system with frequency response H(®) driven
by a process {x(n)}, then

S (@)= H(w, ) H(w, ) H(wy_ )H(-0; — 0, -~ )S¢ (@),

In this report, we will be concerned exclusively with the bispectrum, which we will denote simply

as B(a,a,). The following examples provide some simple illustrations of the bispectrum and its
properties.

Example 1 - Linear processes. If {€(n)} is an i.i.d. sequence of random variables such that
uj = E{e(n)3} #0
then B.(®;,®,)=u3. In general, if {x(k)} has the linear representation

x(k)= ih(n)s(k —-n)

n=-—oc

then




B (0, 0,) = u3H(0 )H(w,)H(-0; - @,),

where

H(w)= Y h(n)e "
R .
Example 2 - Sum of independent sinusoids. If ¢ is a random phase, uniformly distributed
on [0,27], then the bispectrum of the process {cos(kA+¢)} is identically zero for any radian

frequency A. In general, if
N-1

x (k)= Z{ cos (kkﬂ+¢n>,

where {A,} is a given set of frequencies and {¢,} is a collection of i.i.d. random variables
uniformly distributed on [0,2r], then B, (®,,®,)=0.
Example 3 - Phase Coupling. Consider the process

x (k)=cos (kk1+¢1>+cos <k}»2+¢2>+cos (k?»3+ q>3),

where

Ay <Ay, Ay =Ay+2y, 03=0;+0,,

and ¢; and ¢, are i.i.d. random variables uniformly distributed on [0,2r]. In this case, the
third-order cumulant sequence is given by:

C;(mn) = %{cos(kln + A,m)+cos((A, + A, )n ~ A,m)+ cos((A, +A,)n - klm)}
+:11—{cos(7»1m +A,n) +cos((A, + Ay )m— A,n)+cos((A, + A, )m— kln)}.

Consequently, the bispectrum of the process evaluated in D5 shows an impulse at the point (AA).
This is in sharp contrast to the previous example in which the phases were not coupled and the
bispectrum was identically zero. It is for this reason that the bispectrum has been proposed as an
efficient means of detecting quadratic phase coupling in a process [1]. '

Example 4 - Bicoherence. Let {x(n)} be an arbitrary process, and consider the quantity:

oo B, (0, 0,)
B0, 0,) \[Sg(ml)sg(coz)S;(Oh“’h).

This quantity, which we will refer to as the bicoherence of the process, represents a normalized,
scale invariant version of the bispectrum analogous to the more familiar spectral coherence
function. Unlike the spectral coherence, the magnitude of the bicoherence of a process is not
necessarily bounded; however, it can be shown that the variance of a conventional estimate of the
bicoherence is essentially independent of the power of the process . Furthermore, it follows
immediately from Property 3 above that the magnitude of the bicoherence is invariant under all
linear transformations, and the phase is invariant under linear transformations with linear phase




response. That is, if {y(n)} is the output of a linear system with frequency response
H((D) — |H((1))Ieiarg(H(w))
driven by the process {x(n)}, then

Iﬁy(ﬁ)p 0, )l = ||3x(m1’ mz)l,

and if arg(H ((D)) = K- O, where X is an arbitrary constant independent of , then

arg(ﬁy(fﬂp 0’2)) = arg(Bx(col, 0)2)).

For communication purposes, this is a very intriguing property of the bispectrum (or any of the
higher-order polyspectra) since it implies that a communication scheme based on amplitude
modulation of the bicoherence will be insensitive to any linear distortions introduced by the
communication channel. Similarly, a communication scheme based on phase modulation of the
bicoherence will be insensitive to distortions with linear phase response.

A Class of Polyspectrum Estimates

One of the most popular conventional polyspectrum estimation techniques was introduced by
Brillinger and Rosenbiatt in [2]. To define the Brillinger-Rosenblatt (B-R) estimate, let {xv(n)} be
a data sample of length N with discrete Fourier transform {X,(m)}, and let W be a continuous,
(k-1)-dimensional frequency-domain averaging function that satisfies

(i) W(w) 20,
(i) W(-w) = W(w),
(i) [W(@)da=1
Rk—l

For any 0 < ¢ < 1, define the scaled version of W by Wy(w)= N(-elk=l) W(N I_CQ). Define the
generalized periodogram by:

b

1
Iﬁ(m, T nk—-l) = N Xn (nl )XN(nZ)' XN (nk—i )XN (‘”1 —hy—- '—nk—l)

and let the indicator function X be defined by:

0 if Y ;=0 (mod 2m) forany J < {1 k—1},
@)= jel
1 otherwise.

Using the above notation, the B-R estimate of the true polyspectrum S; (@) at an arbitrary point is
given by:

a ! & —~ 27n 27n
S$X(N,W,0) = _) W ( Lo 2Pl _)
i ®) (N 2 2 M N 1 N k-1

ny=—ee  Ap_y =
27‘tn1 21mk_1) X
. RN I n,...,n_ .
X( N N N( 1 k 1)
6




In particular, for this study, we always used an averaging parameter value of ¢ = 0.5 and
separable, two-dimensional rectangular averaging windows of the form:

W(ml,w2)=W1(m1)Wl(m2>,
1
— if lwlsn,
W1<(1))= 27t
0 otherwise.
Hence, all of our bispectrum estimates took the particular form:
p NNl 2nn 2nm
§N<0)1’(D2):7V—2— Y Y w, W—Nuzml W, N_U_z'—NUZmz

n=1 m=1
X y(n)X y(m)Xy(n+tm).
Similarly, all of our bicoherence estimates took the form:
By (0‘)1 0y >

BN<0)1’0)2>= > (0) ,(Dﬁ>

b

where

1 NNl 2nn 2nm )
ZN((OI’(DZ)z 7L L W, N—UT"N”2“)1 W, N2 -N" W,

X y(n) X y(m) Xy (n+m)|.

The B-R estimation technique was employed primarily because the statistical behavior of such
estimates is well understood. Furthermore, the B-R estimates can be computed very efficiently
with a fast algorithm designed and implemented by the principal investigator [3].

3. Signal Design

There are many possible signal designs that one might use in order to encode information in the
bispectrum or bicoherence of the transmitted waveform. In essence, each possible approach can be
regarded as a generalization of a more conventional modulation technique, in which the higher-
order moment (HOM) content of the signal is available in addition to the information transmitted in
the conventional modulation. In situations where the channel performs approximately as an
additive white Gaussian noise (AWGN) channel, the conventional detection scheme is often nearly
optimal and will outperform detectors that attempt to exploit the HOM content of the signal. On the
other hand, in situations where the principal source of channel degradation is something other than
AWGN, such as fading or narrowband interference, considerable performance improvement can
be realized by employing a detector that is designed to exploit the higher-order structure of the
signal.

In this study, we considered baseband signals of the following form:
3

x(t)=m(1) ¥ cos (20N, iy 140, 1y );




6 6
Where {7\,. };=1 is a set of frequency elements, {(l)i }i=1 a set of phase elements, b the transmitted bit

value (0 or 1), and m(¢) a spreading signal, which will be discussed in detail below. We will also
assume the following relationships among the various elements:

-

O 1y &Gy yv uniformly distributed on [2,7],
7\'3—(—1)"=}\‘1—(—1)‘7+)\‘2_(_ 1y and

¢3-(-1)"=¢1—(-1>b+¢2—(—1)"'

Notice that such a signal is really a generalization of both a frequency-shift-keying (FSK)
waveform, in which three phase-coupled frequency components are used to transmit each bit
instead of a single component, and a direct-sequence spread-spectrum (DSSS) waveform, in which

the spreading sequence is modulated onto a multiple-component carrier. Similarly, if the set {A;}
is allowed to vary randomly, the signal becomes a generalization of a frequency-hopped spread-
spectrum (FHSS) waveform. For expository purposes, we will generally assume that the
frequencies are fixed, but it should be remembered that this need not necessarily be the case.

We will be concerned primarily with the sampled version of this signal, denoted by the sequence
N-
{xN(n) },,=(: , where

x"(n)=x (nT)

=m(
am” (n)

3
m (nT) -;cos <2nk,._(_l),, ‘nT+ ¢,._(_1,,)
3
N
';cos (?»,._(_l,, -n+¢,._(_1).,>.

Here, T is the sampling interval, and NT is the length of the bit interval. Notice that we have
. . . N-1
implicitly defined the spreading sequence {m" (n) },,=O , and the set of normalized frequencies

3
{?»:V_(_U,, } using the relationships:

i=1
mN(n)zm(nT),
AV=2nTA.

Since we will almost always be referring to the digital sequence rather than the analog signal, we
will usually abuse notation somewhat and neglect to use the superscript “N” characters except
when necessary to avoid confusion. Also, we will generally assume that a bit value of b =0 is
transmitted.

The main purpose of the spreading sequence {m (n)} is to increase the bispectral bandwidth of the
signal in order to improve the efficiency of the bispectrum estimates employed in the detector. As
discussed above, the phase-coupled carrier itself has a bispectrum that takes the form of an impulse
at a single point in the principal domain. This turns out to be problematic from a statistical
standpoint, at least when using B-R estimates of the bispectrum and bicoherence, as we have done.
This problem can be alleviated by modulating the carrier with a pseudo-random sequence having
nonzero bispectrum and bandwidth chosen to match the “bandwidth” of the bispectrum estimator.
In particular, if the bispectrum estimates are computed using an averaging parameter with value




0 < ¢ < 1, then the bandwidth of the spreading sequence in the digital frequency domain should be
of order Ne-! radians, where N is again the number of samples in a bit interval. This can be
accomplished in the following manner.

Let {h(k)} be the impulse response of a real-valued, low-pass linear filter with frequency response

H(w)and ¥ h*(k)=1, and let {hn(k)} be the scaled version of the impulse response with

k=

associated frequency response:

1-c

Hylo)=N> H(N'0), -t<o<r.

Let {u(k)} be a zero-mean, i.i.d. random process with variance O'f, third-order moment ms3 # 0,

and bicoherence B = mg/o'f. Filter {u(k)} with {hn(k)} to produce the spreading sequence
{m(n)}, which will have spectrum, bispectrum, and bicoherence that satisfy:

H (o[

Bm<m1’w2)=u3HN<0)1>HN<O)2)HN<_0)1_O‘)2>’

2

Sm(m>:0'3

B% if B, (o,,0,)#0,

’Bm (0)1 ’“)2>|= o,
0 otherwise.

If {m(n)} is generated in this fashion, then the transmitted signal {x(n)} has spectrum, bispectrum,
and bicoherence that satisfy (assuming b = 0):

5. (0)= %5 (o2 (o)}
Ky

Bx((ul,coz)z—g—HN@)l—}»l>HN(m2—k2)HN(—m1—0)2+k3>, near (kl,kz),

Bx<m1,m2)l=-&3— near <7»1,7\,2>.

3 b
s

Now, in general, the bicoherence of the signal, when considered as a stationary random process,
can be made arbitrarily large by choosing an i.i.d. sequence {u(k)} with arbitrarily large skewness
(i.e., the quantity m3/63) as the input to the filter {hy(k)}. However, in practice, the bispectrum
of the signal must be estimated from only the N samples available during a single bit interval, and it
is not difficult to show that the sample skewness coefficient of a data sample of length N cannot be
larger than AN . In fact, the only sequences that actually attain the maximum sample skewness are
of the form:

(k) =AW [8y(8) -7} 0




N-1
where {8 vik) }k:O is any circular shift of a unit impulse sequence of length N. Since we have the

luxury of using pseudo-random rather than truly random sequences in our modulation scheme, we
will always choose the sequences {u(k)} to be of form (1).

Finally, for the purposes of this study, we always used an averaging factor of ¢ = 0.5, and we
employed filters {hy(k)} that were scaled versions of a canonical low-pass filter; that is,
1 if (o],
H(w)= o
0 otherwise.

This completely describes the signals used in this study. Henceforth, we will refer to these signals
as generalized, phase-coupled FSK (GPCFSK) waveforms and to detectors designed to exploit the
HOM structure of such signals as HOM detectors.

4. Performance in AWGN

We begin our analysis of the performance characteristics of bispectral modulation techniques by
considering the classical AWGN channel. That is, we assume that the received signal sequence
{r(n)} takes the form:

rin)=x(n)+w(n),
where {x(n)} is a GPCFSK signal, and {w(n)} is a zero-mean, white Gaussian noise process with

variance 6-. As discussed in Section 2, we used the Brillinger-Rosenblatt technique to generate

estimates of bispectra as well as estimates of normalization factors that were in turn used to
compute bicoherence estimates. Throughout the remainder of this report, we will make frequent

2 2
reference to the asymptotic distributions of the estimates ’BN (kl A )I , IBN (kd,ks )I ,
2 2
lZN <k1,K2 )I , and |ZN <7» 4N )’ , where (A1,A,) is the normalized frequency pair in D5 associated
with the bit value b = 0, and (A4,As) is the pair associated with b = 1. If we let

w(hha) b who=[B B (A2 )
G;,lzvar {BN(}\’M)\’S)}’ H§,1=|E{BN<7"4J\'5>}
0'20=Var {ZN (7\'1’7”2)}’ “20‘—‘|E{2N ()"1’7”2>}|
s
)

0';1=Var{ZN(7\,4,7£5>}, H§,1=|E{ZN(M,7~ }r’

then it follows from the asymptotic distribution theory developed in [2] that the distributiuns in
question can be approximated as follows:

Gyo= Var {B

2
’
2
’

2 2 2
By (2 ) -2z 2222 () - o |22
GBO cSZ,Q

2
B2t 12, (s ) - o |

Bu(rors)l -




o

Here, we have used the notation (7» ) to indicate a non-central chi-squared distribution with m

degrees of freedom and non-centrality parameter A. If we assume that separable rectangular
averaging windows and an averaging parameter of ¢ = 0.5 are used in all B-R estimates, then it
follows from the results in [2] that,

3 6
E, N2 2 o,
3.9 » Opgo*™ 2333

N2 <'Yb+6N“2>3,

2
Upo™

6 6

c 3 c, . ._ 3
ugyozz—;zv‘“(ybmzv‘”) OGN *(y,+6N")",

3 2
3 6 2 3 -1/2 6
—%O

2

2 2 6 2
“B,1~0’ 03,1”Gwa uZ,l

where Ej, represents the energy transmitted in each bit sequence, O'i represents the power spectral
density (i.e., variance) of the AWGN process, and 7, represents the signal-to-noise ratio (SNR),
givenby y,=E,/ 6>

Now consider a bicoherence detector that employs the following decision rule to decide whether
b =0 or b =1 has been transmitted:

_|oif po= BT,
d({r(m})= A
1if Bi< B2,

where we have adopted the notation:

B

2

)l Bl
2o (o)l [2a(his )
Assuming that b = 0 is sent, the theoretical probability of error (P) for such a detector is given by:
PP {31<63}
x; (M) % (0) _ 3yN
=P 3 < 3 ’ A= 3 123
T EN ETERT I TR
2
zP{F a ,%NW<EF2,%NW}’

1+d

a=2+A\, d=£]’
a

where the symbol F,, , represents an F distribution with m and n degrees of freedom, and the final

expression is meant to be interpreted in accordance with the statement “the probability thata
random variable with distribution Fy is less than a constant times an independent random variable

with distribution Fy, ,.”
Similarly, a detector based on the bispectrum rather than the bicoherence would have a theoretical

11




P, given by:
P.=P {8y (A <|Bu(reds)|

2 2 2
GB,O u’B,O uB,l
Pi— X3 2—
GB,I

2
B0
1723
“PIF | <_2_<£V_>__3 .
1+d,z a <7b+6N1/2)

To get some idea of how this performance compares with the performance of more conventional
detectors, we note that if one ignores the phase coupling of the three carriers comprising the signal,
the optimal noncoherent detection strategy is to compare the outputs of two envelope detectors
matched to the modulation (i.e., spreading) sequence {m(k)} and appropriate carrier frequencies.
The performance of such a detector (as discussed, for example, in [4]) is given by:

p:= % . 1,14 ’
which is identical to the performance of the optimal noncoherent detector for conventional binary
ESK signals in AWGN [5]. The theoretical performance of the bicoherence and bispectrum
detectors relative to this optimal detector performance is illustrated in Figures 2 and 3 for several
values of the parameter N. As one would expect, the optimal detector outperforms both of the
HOM detectors regardless of the length of the bit interval, but the performance of the bicoherence
detectors clearly improves as N increases.

2
Bl 2

5 X2

b4

2

0
2 14
(3
& ]
[ -
g ——N =756
s 1 w1 e N=512
E 34 v w0 I N = 1024
= 4y NN e N =2048
z 4 - - — - Optimal
k=) 4
'g -5 4 X!
(¥ [

| \
] 'l .
-6 lIlllllllllll[lllllllllllllIl]lll'
0 5 10 15 20 25 30
SNR (dB)
Figure 2. Theoretical Performance of Bicoherence Detector on AWGN
Channel
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Figure 2. Theoretical Performance of Bispectrum Detector on AWGN

Channel

It should be noted that the bispectrum detector significantly outperforms the bicoherence detector at
higher SNRs. This is to be expected on AWGN channels, but on channels that exhibit significant,

frequency-selective fading, the performance of the bispectrum detector can be expected to

deteriorate substantially while the performance of the bicoherence detector should remain relatively

stable.

In order to validate our theoretical predictions of the performance of the HOM detectors on an
AWGN channel, we performed several simulation studies. The results of the simulations are

displayed graphically, relative fo the theoretical performance predictions, in Figures 4-11.

13
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Figure 5. Performance of Bicoherence Detector on AWGN Channel
(N =512)
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Figure 6. Performance of Bicoherence Detector on AWGN Channel
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Figure 9. Performance of Bispectrum Detector on AWGN Channel
(N =512)
(The value for P, at 25 dB is an approximate upper bound. No errors were
encountered in 202,400 independent trials.)
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Figure 11. Performance of Bispectrum Detector on AWGN Channel
(N =2048)

As these figures indicate, the correspondence between the theoretical performance results and the
simulation results is similar for both the bicoherence and bispectrum detectors. In particular, for
bit intervals of length 1024 points or more, the theoretical results are well supported by the

17




simulations. The fact that larger values of N are required to produce simulation performance that
agrees with theoretical predictions is not surprising since the theoretical results are all based on
asymptotic distribution theory; that is, the theory is only valid as N goes to infinity.

5. Performarce in Partial-Band Jamming

In this section, we consider the performance of bispectral modulation in the presence of partial-
band jamming. We restrict attention to bicoherence detection strategies since they are somewhat
easier to handle analytically than bispectrum detecticn schemes, both from a theoretical and
simulation standpoint. In any case, preliminary analysis indicates that the performance
characteristics of the two different strategies are quite similar.

We now assume that the received signal takes the form:
r(n)=x(n)+j(n),

- B . . . . 2
where {j(n)} is a zero-mean, band-pass interference process with zero bispectrum, variance ; and

bandwidth equal to 2mo radians, with O < o < 1. This implies that a fraction o of the total
available bandwidth is being jammed during each bit interval, and we assume that the jammer
power is distributed randomly throughout the spectrum. That is, in any bit interval, the power

spectral density of the jamming process is identically equal to sz/oc on its region of support, where

the region of support varies from one bit interval to the next but always occupies exactly 2o
radians. This is, of course, equivalent to the assumption that the jammer remains fixed and the
user randomly varies the locations of the signal carrier frequencies.

Under these assumptions, it is easy to see that the total probability of error is approximately:
/ 3 2
P=(1-0) Py +3a(l-a) Py+30*(1-0)Py+0’Py,

where Py, represents the probability of error given that exactly k components of the signal have
been jammed (i.e., a fraction &/3 of the signal bandwidth intersects the region of support of the
jammer.) Furthermore, using the asymptotic distribution theory developed in the previous section,
it can be shown that:

2
P&ZP{F ak) 81 N”Z<E](_)F2,_£NVZ}’
224

Trd® 224
where
A(k)
k)=2+AKk), dk)y=—=,
atk) =2+ Ak), d( PO)
3y;N E
A(k) = g 5 Y=
9 Yb+_N1/2 G,
o

Here again, E}, is the energy in the signal during one bit interval, and O'f is the total jammer power.
The worst-case probability of error for the bicoherence detector in partial-band jamming occurs at
the value of o that maximizes the expression for total probability of error given above.
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Unfortunately, this optimization problem does not admit a closed-form solution, but an
approximate value for the worst-case probability of error can be found numerically for each

combination of the parameters N and 7p.

As a comparison, we consider the performance of a noncoherent binary FSK (BFSK)
communication system in the presence of partial-band jamming. It can be shown [5] that the
probability of error for such a system is given by:

Similarly, it can be shown that the probability of error for such a system is maximized when
o =o*, where

4
— if y,24,
a*_.—. Yb

1 if y,<4

Hence, the worst-case probability of error for the BFSK system is given by:

2
— if v,>4,
Yo

I -y e,
e if y,<4.

To provide a simple comparison of these two systems, we evaiuated numerically the approximate
worst-case probabilities of error for the bicoherence detector for several different combinations of

N and vy,. The results of this evaluation are compared graphically with the worst-case probabilities
of error for the BFSK system in Figure 12.

P, =

e
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Figure 12. Theoretical Performance of Bicoherence Detector for Worst-Case
Partial-Band Jamming

As the figure indicates, the theoretical performance of the bispectral modulation system improves
as the value of N increases but stabilizes around N = 1024. Furthermore, at higher values of
SNR, the bispectral modulation system significantly outperforms the BFSK system in a partial-
band jamming environment.

Once again, to validate the theoretical performance predictions, we performed several simulation
studies. In this case, we simulated the performance of a bicoherence detector operating on a
GPCFSK signal in the presence of a jammer with perfect knowledge of the signal. Thatis, we
assumed that the bandwidth of the jammer was exactly matched to the bandwidth of the signal for
all values of N and all three of the signal components were certain to be jammed. Under this
scenario, the total probability of error is exactly equal to Py3, which we use as the baseline for
comparison with the simulation results. The results of the simulations are presented graphically,
relative the theoretical values of Py, in Figures 13-15.
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Figure 13. Perforraance of Bicoherence Detector Against Omniscient Jammer
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Figure 14. Performance of Bicoherence Detector Against Omniscient Jammer
(N =1024)
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Figure 15. Performance of Bicoherence Detector Against Omniscient Jammer
(N = 4096)

Again, as the figures indicate, for bit intervals of length 1024 samples or more, the theoretical
results are well supported by the simulations. Interestingly, in the low SNR region, where the
disparity between the simulations and the theoretical predictions is the greatest, the simulated
performance is actually considerably better than predicted. This implies that even for low SNR
situations, the theoretical results provide a lower bound that should be useful for performance

predictions.

6 . Conclusions

In Phase I of this study, we have completed a thorough performance analysis of one possible
design for a digital communication system based on bispectral modulation. We have analyzed the
performance on both AWGN channels and partial-band jamming channels and compared that
performance to the known performance characteristics of more conventional modulation schemes.
As expected, the performance of the bispectral modulation technique on the AWGN channel is
inferior to the performance that can be achieved with conventional noncoherent schemes, but the
performance in the presence of partial-band jamming is significantly better than conventional
schemes in the high SNR regimes. This implies that significantly less power is required to
maintain a high data rate in a jamming environment when using bispectral modulation than when
using conventional modulation such as BFSK. Clearly, this has implications not only for channels
subject to intentional jamming, but also for situations where two or more frequency-hopped
systems are operating in close proximity to one another, or where two adjacent cells in a cellular
network are required to employ some frequency reuse.

Even in a relatively benign AWGN environment, bispectral modulation may offer some advantages
over conventional approaches. For example, if covert communication is desired, a GPCFSK

system could be employed instead of a simple BFSK system. The system could be used just as a
conventional BESK system in noncovert mode; that is, two modulated frequencies would be
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assigned to each of several users, who would transmit on either one frequency or the other
depending on the bit value they wished to send. In covert mode, the frequency coupling between a
subset of the observable users would be coordinated to transmit an additional data stream that
would only be detectable with an HOM detector. The enforced coupling among the chosen subset
of users would cause some interference with the remainder of the users but such interference
would normally be detectable by the other users, who would simply retransmit. The
nonparticipating users would not interfere substantially with the HOM data stream, which would
essentially be undetectable by conventional techniques.

Similarly, one could treat a GPCFSK system as a conventional DSSS system in which each user
modulates the spreading sequence onto multiple carriers. The optimal receiver for each user would
then incorporate envelope detectors matched to the spreading sequence at each of the appropriate
frequencies. Naturally, such a detection scheme requires that the detectors acquire and track the
phase of the chip sequences in order to give optimal performance, and performance could be
substantially degraded if the detectors were not properly synchronized. In contrast, an HOM
detector, which could be run in parallel to the conventional detector, requires only relatively crude
synchronization in order to maintain stable performance characteristics. In this case, an intelligent
combination of the two detection strategies could enhance the overall performance of the system.

It is clear from the results of this study that polyspectral modulation techniques in general, and
bispectral modulation in particular, can provide improved performance over conventional
modulation strategies in some situations. Considerably more research involving the various
modulation techniques available will be required to determine the true extent of the performance
advantages and the feasibility of the various alternatives. We believe that our Phase I results
strongly suggest that such additional research is warranted.
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